Clinical correlates in drug-herbal interactions mediated via nuclear receptor PXR activation and cytochrome P450 induction

Seema Negi¹, Mohammad A. Akbarsha² and Rakesh K. Tyagi¹

¹Special Centre for Molecular Medicine, Jawaharlal Nehru University
New Delhi – 110067, India
²Department of Animal Science, School of Life Sciences, Bharathidasan University
Tiruchirappalli - 620 024, India

This article is dedicated to the memory of Late Prof. Ben M.J. Pereira of Indian Institute of Technology, Roorkee, who had been actively associated with SRBCE and the Journal of Endocrinology and Reproduction

Summary

Pregnane and Xenobiotic Receptor (PXR), a vital xenosensor, acts as master regulator of phase-I (cytochrome P450) and phase-II enzymes (glutathione S-transferases, sulfotransferases, and uridine 5'-diphosphate glucuronosyltransferases) as well as several drug transporters (multi-drug resistance protein, and multi-drug resistance-associated protein). PXR can bind to a variety of chemically distinct endobiotics (steroids, bile acids and their derivatives, vitamins, etc.) and xenobiotics (prescription drugs, herbal medicines, endocrine disruptors, etc.). Activation of PXR by various compounds leads to trans-activation of PXR-target genes involved in detoxification system (phase-I and phase-II enzymes, and efflux proteins). Herbal medicines are readily used without prescription under the belief that anything natural is safe. These medicines contain active chemical constituents which execute distinctly different or similar pharmacological response(s). But, like prescription drugs, herbal drugs also have both therapeutic and, sometimes, adverse effects. Some of the herbal drugs induce drug metabolizing enzymes (especially CYP3A4) and drug efflux proteins via activation of PXR. Phase-I enzyme CYP3A4 is involved in the metabolism of 50-60% of clinical drugs as well as the chemical ingredients in herbal medicines. In addition to this, 25-30% of these compounds are metabolized by the CYP2B isoenzymes. The combined metabolic effects of phase-I and phase-II enzymes and drug transporters, following induction by therapeutic molecules, constitute the molecular basis for many drug-herbal interactions. For example, if one drug activates PXR, it can encourage the elimination of a co-administered drug that is also metabolized and eliminated by PXR-target gene products, thereby affecting the therapeutic efficacy of the drug in the context of combination therapy. The present review highlights some of the recent clinical correlates in drug-herbal interactions mediated primarily via PXR and cytochrome P450.

Keywords: Drug-herbal interactions, Pregnane and Xenobiotic Receptor (PXR), cytochrome P450 (CYP450), drug transporters.

1. Introduction

The history of herbal medicines is as old as human civilization. The documents, many of which are of great antiquity, reveal that plants were used as medicines in China, India, Amazon Basin, Egypt and Greece, long before the beginning of the Christian era. India is very rich in natural resources and traditional knowledge. The use of plants as a source of herbal medicine has been an innate and vital aspect of India’s healthcare system. The three Indian traditional systems of medicine (Ayurveda, Siddha and Unani) have identified more than 1,500 medicinal plants, of which nearly 700 are commonly used (Agarwal and Raju, 2006). According to an estimate by the World Health Organization (WHO), 70-80% of the world population, especially in developing countries, relies on traditional medicines, mostly plant drugs, for their primary healthcare needs (WHO, 2002; Agarwal and Raju, 2006). Recent reports reveal that the worldwide market of herbal medicines is estimated to be around US $80 to 100 billion, and it is projected to reach up to US $2,500 billion by the year 2010 (Mathur, 2003; Agarwal and Raju, 2006).

Correspondence to be addressed to: Rakesh K. Tyagi, Ph.D., E-mail: rktyagi@yahoo.com; rkt2300@mail.jnu.ac.in

Document Produced by deskPDF Unregistered :: http://www.docudesk.com
Herbal ingredients are readily used by millions of people without prescription under the belief that anything natural is safe. Like allopathic (prescription) drugs, herbal medicines also have different pharmacokinetic and pharmacodynamic properties which ultimately lead to produce therapeutic responses, but sometimes cause adverse actions and/or drug-herbal interactions. The concurrent use of herbal medicines and conventional (prescription) drugs by patients suffering from different diseases has progressively increased. Co-administration of herbal medicines with conventional drugs increases the risk of undesirable interactions between the two. Recently, St. John’s wort (*Hypericum perforatum*), a herbal drug traditionally used as a natural treatment for depression, represented a highlighted case that warranted its safety evaluation (Brazier and Levine, 2003). Many of the compounds present in herbal medicines can potentially interact with the co-administered conventional drugs, causing either serious side effects or decreased pharmacological effect of the conventional drugs of narrow therapeutic index. Although the consumption of herbal health supplements along with prescription drugs is increasing globally, adequate information is not available on the mechanisms and consequences of drug-herbal interactions.

Drug-herbal interactions can occur at the pharmaceutical, pharmacodynamic or pharmacokinetic (PK) levels (Beijnen and Schellens, 2004) but most of the interactions occur at PK level (Brazier and Levine, 2003) that involves changes in absorption, distribution, metabolism and excretion of the conventional drug, which in turn determine the bioavailability of the drug. The metabolism of conventional drugs involves phase I enzymes such as cytochrome P450 family (CYP) or phase II enzymes, especially glutathione S-transferases (GST), sulfotransferases (SULT) and uridine 5’-diphosphate glucuronosyltransferases (UGT). These drug metabolizing enzymes and drug transporters, especially multi-drug resistance protein (MDR) and multi-drug resistance-associated protein (MRP), are regulated by the nuclear receptors (NR) such as Pregnane and Xenobiotic Receptor (PXR), Constitutive Androstane Receptor (CAR), and Vitamin D-binding Receptor (VDR) (Meijerjan et al., 2006). Binding of a herbal constituent as ligand to any of these receptors activates or inhibits their transcriptional activity which would increase or decrease the metabolism or transport of the co-administered conventional drug(s) and lead to decreased therapeutic efficacy or increased toxicity of the drugs. Of the three NRs, PXR, also known as the Steroid and Xenobiotic Receptor (SXR) (Blumberg et al., 1998), is the molecule in focus for this review article. The emphasis of the present review is first on the modulation of PXR by active herbal compounds, and second on the interaction of active herbal compounds with prescription drugs via PXR-modulated detoxification machinery. The drug-herbal interactions with the involvement of PXR-mediated regulation of phase-I enzymes, phase-II enzymes and drug efflux proteins (drug transporters) is the fundamental platform of the discussion.

PXR is a novel ligand-activated intracellular transcription factor belonging to the nuclear receptor superfamily. PXR is structurally characterized by its four distinct domains i.e., an amino-terminal transactivation domain, a central DNA-binding domain (DBD), the hinge region, and a carboxy-terminal ligand-binding domain (LBD). Unlike other nuclear receptor orthologs, PXR ortholog shares less amino acid homology in the LBD, providing the possibility for marked variation in its activation profile across species. PXR plays an important role in the transcriptional regulation of various genes involved in xenobiotic detoxification (Synold et al., 2001; Maglich et al., 2002). It has been shown that about 40 genes are under PXR regulation (Maglich et al., 2002). PXR acts as master regulator of detoxification defence machinery, i.e., phase-I and phase-II enzymes, as well as several drug transporters (Kliwer, 2003). After activation by endogenous or exogenous ligands, PXR heterodimerizes with the 9-cis retinoic acid receptor (RXR), binds to the xenobiotic response elements of the target genes and modulates their expression, leading to detoxification and elimination of the xenobiotics. Other than its function as a vital xenosensor, PXR also plays a key role in the metabolism of endobiotics (steroids, bile acids and their derivatives, vitamins, etc.) and xenobiotics (synthetic drugs, herbal medicines, endocrine disruptors, etc.). Ligand-mediated transcriptional activation of PXR is one of the principal mechanisms underlying the induction of drug metabolizing enzymes and drug transporters that ultimately leads to interactions of co-administered drugs. Irrespective of its ligand-bound or ligand-free status, PXR is predominantly present in the nuclear compartment and associates with condensed chromosomes during all stages of mitosis (Saradhi et al., 2005). In addition to the role of PXR in detoxification, bile homeostasis (Saini et al., 2005) and bone metabolism, its role in cancer is also becoming apparent. Therefore, PXR appears to be an important and promiscuous xenosensor in human health and disease (Saradhi et al., 2006). After completing a decade, the research outcome of several new findings on PXR reveal the diverse role of PXR in normal physiological control and patho-
physiological situations. Additionally, other studies not only expound the involvement of PXR in drug-drug/herbal interactions via modulating detoxification defence machinery but also in designing safer therapeutic molecules (Staudinger et al., 2006; Pal and Mitra, 2006).

2. Molecular basis of drug-herbal interactions

The chemical constituents of herbs have the potential to interact with various classes of drugs. These interactions could be directly or indirectly mediated by induction or inhibition of enzymes involved in drug metabolism and drug efflux proteins (Maglich et al., 2002; Pal and Mitra, 2006). The primary mechanisms behind drug-herbal interactions involve either induction or inhibition of intestinal drug efflux pumps (efflux proteins such as P-glycoprotein and MRPs) and intestinal and hepatic metabolism by CYPs (Evans, 2000; Ioannides, 2002). PXR activation by various compounds modulates intestinal efflux proteins and intestinal and hepatic CYPs (especially CYP3A4) which results in altered drug concentrations in plasma, thereby, causing drug-drug interactions (Lehmann et al., 1998; Evans, 2000). Therefore, herbs which have the potential to modulate efflux proteins and CYP3A4 may cause drug-herbal interactions and alter bioavailability of therapeutic drugs (Fugh-Berman, 2000; Fugh-Berman and Ernst, 2001; Izzo and Ernst, 2001). Any inhibitory effect of herbs on efflux proteins and CYP3A4 may result in elevated level of plasma and tissue concentration of co-administered prescription drug that would lead to toxicity. On the other hand, the inductive effect may cause decrease in drug concentration that would lead to decrease in therapeutic efficacy and failure of treatment (Staudinger et al., 2001). These drug-herbal interactions and detoxification occur mainly in the intestine and liver simultaneously. Indirectly, PXR accounts for the breakdown of about half of the clinically used drugs by the activation of the main transcriptional regulators of CYP3A4 and P-glycoprotein which are extensively distributed in the human tissues such as liver, intestine, colon, lung, etc. (Blumberg et al., 1998).

However, other drug metabolizing enzymes and drug transporters that are shown to be under transcriptional control of PXR include CYP2B6 (Goodwin et al., 2001), CYP2C8, CYP2C9 (Synold et al., 2001), CYP3A4 (Lehmann et al., 1998), SULT, UGT 1A1, GST, MDR1 (Geick et al., 2001) and MRP2 (Kast et al., 2002). The enzyme CYP3A4 is involved in the metabolism of 50-60 % of clinical drugs as well as compounds in herbal medicines. In addition to this, 25-30 % of these compounds are metabolized by the CYP2B isoenzymes. The combined metabolic effects of CYP3A and CYP2B, upon their induction by xenobiotic substrates such as compounds in herbal drugs, constitute a molecular basis for many drug-herbal interactions (Pichard et al., 1996). For example, if one drug activates PXR, it can encourage the elimination of other co-administered drugs that are also metabolized and eliminated by PXR-target gene products, thereby reducing the therapeutic efficacy of many drugs in combination therapy (Fig. 1). Some of the constituents of herbal medicines implicated in drug-herbal interactions mediated via PXR are shown in Figure 2. Future studies are expected to include more herbal constituents to this list.

3. St. John’s wort – Drug interactions

St. John’s wort (Hypericum perforatum) is a herbal remedy widely used for the treatment of depression. The crude extract of St. John’s wort contains a complex mixture of several active chemical constituents such as hypericin, quercetin, isoquercitin, biflavonoids, hyperforin, naphthodianthrones, procyanidines, catechin tannins, chlorogenic acid, etc. The principal compound responsible for antidepressant action of St. John’s wort is hyperforin, the response of which is mediated primarily via inhibition of synaptic reuptake of neurotransmitters (serotonin, noradrenaline and dopamine) (Moore et al., 2000).

St. John’s wort is an efficacious activator of PXR in cell-based reporter assays (Moore et al., 2000; Wentworth et al., 2000) and its activation induces hepatic drug metabolism (Moore et al., 2000). PXR activation leads to up-regulation of CYP3A4 expression and an increase in metabolism of CYP3A4 substrates (e.g., cyclosporin). St. John’s wort has been shown to alter the expression and function of P-glycoprotein in animal and human subjects, resulting in decreased concentrations of drugs in plasma (e.g., digoxin) (Durr et al., 2000; Fugh-Berman and Ernst, 2001). St. John’s wort is responsible for a number of clinically relevant drug interactions that reduce the efficacy of several therapies, such as in transplantation, HIV/AIDS, cancer, etc. It has also been shown that St. John’s wort enhances the metabolism of a variety of prescription drugs. These include oral contraceptives, cyclosporine, digoxin, warfarin, indinarin and theophylline (Johne et al., 1999; Nebel et al., 1999; Breidenbach et al., 2000; Durr et al., 2000; Karlova et al., 2000; Mai et al., 2000; Piscitelli et al., 2000; Ruschitzka et al., 2000; Hennessy et al., 2002; Brazier and Levine, 2003). Several reports disclose around 80-85 drug-herbal interaction cases with St. John’s wort, of which 54 cases were with the drug cyclosporine. Other drug categories interacting with St. John’s wort are oral...
Drug-herbal interactions mediated via PXR. PXR, upon activation by herbal drugs, heterodimerizes with RXR and subsequently binds to specific response elements, which ultimately leads to transcriptional regulation of the genes involved in metabolism and elimination via components of phase-I, phase-II and phase-III. Binding of herbal drugs to PXR and induction of detoxification machinery promotes metabolism and elimination of co-administered prescription (allopathic) drugs, which are the substrates for the metabolizing enzymes. Rapid clearance of prescription drugs results in reduced therapeutic efficacy of drugs used to treat different diseases. CYP450, Cytochrome P450; GST, Glutathione S-transferase; UGT, Uridine 5'-diphosphate glucuronosyltransferase; SULT, Sulfotransferases; MDR, Multi-drug resistance protein; MRP, Multi-drug resistance-associated protein.

contraceptives (12 cases), antidepressants (09 cases), warfarin (07 cases) and one case each with theophylline, phenprocoumon and loperamide (Kast et al., 2002). A recent study identified 37 cases of interactions for St. John’s wort with digoxin (13 cases), clopidogrel (06 cases), indinavir (08 cases), irinotecan (05 cases), antipsychotics (03 cases), tacrolimus (01 case) and with an anesthetic (01 case) (Gokhil and Patel, 2007). Induction of drug metabolizing enzymes by St. John’s wort lowers the plasma concentration of co-administered prescription drug. Similarly, prolonged intake of herbal supplement (inducer) may result in sub-therapeutic concentrations of co-administered drug (Pal and Mitra, 2006). All these reports indicate that St. John’s wort is somewhat a risky proposition when combined with drugs in the categories mentioned above. Most of these drugs are metabolized by phase-I enzymes, especially CYP3A, and these interactions are mediated by the involvement of PXR. St. John’s wort compounds bind to PXR, and strengthen the interaction between PXR and the steroid receptor co-activator 1 (SRC-1) (Wentworth et al., 2000). The findings suggest that structurally modified drugs that do not bind and activate PXR will be safer anti-depressants since unfavourable drug interactions can be prevented during co-administration of other drugs.

4. Mukul myrth – Drug interactions

Mukul myrth (Commiphora mukul) is an Ayurvedic medicine used to treat hyperlipidemia (Beg et al., 1996). The stereoisomers E- and Z-guggulsterone are the active constituents of gugulipid that diminish hepatic cholesterol levels (Singh et al., 1990; Urizar et al., 2002). The therapeutic effect of guggulsterone is believed to be mediated through the antagonism of the nuclear receptor Farnesoid X Receptor (FXR) (Urizar et al., 2002).

Recently, by using promoter-reporter assays it was shown that guggulsterone activates PXR. More over, gugulipid and guggulsterone treatments stimulate CYP3A4 gene expression through PXR in hepatocytes. Although this herbal drug produces desirable therapeutic effects in lipid disorders, it may cause adverse drug-herbal interactions on combination therapy through activation of
PXR. Protein interaction assays show that guggulsterone activates PXR by recruiting the co-activator SRC-1 (Brobst et al., 2004). The results of a well-controlled human study revealed that guggulipid interacts with prescription drugs such as diltiazem and propranolol and reduces their peak plasma concentrations (Dalvi et al., 1994). Studies have shown that guggulsterones not only activate FXR and PXR but also modulate the activity of multiple nuclear receptors, including CAR, glucocorticoid receptor, progesterone receptor, mineralocorticoid receptor, androgen receptor and estrogen receptor (Dalvi et al., 1994; Burris et al., 2005; Ding and Staudinger, 2005a).

5. Kava kava – Drug interactions

Kava kava (Piper methysticum) is a herbal remedy widely used as an anti-anxiety drug. It is also used to treat a wide variety of disorders including insomnia, stress, restlessness, muscle fatigue, gonorrhoea and vaginitis. The therapeutically important compounds in Kava kava are a group of structurally related lactones, collectively termed kavalactones. The effects of kavalactones are believed to be mediated by \( \gamma \)-aminobutyric acid (GABA) receptors in the central nervous system (CNS) (Jussofie et al., 1994). In addition to their effect on the CNS, kavalactones have been shown to modulate the activities of hepatic CYP enzymes. The activities of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 are inhibited by kavalactones through a competitive mechanism (Mathews et al., 2002). Kavalactones, desmethoxyyangonin and dihydromethysticin, activate PXR in reporter gene assays but with lesser efficacy as compared to the classical PXR.

Fig. 2: Chemical structure of some of the active constituents of herbal medicines responsible for PXR-mediated drug-herbal interactions. This figure includes such active constituents as hyperforin (in St. John’s wort), guggulsterone (in Mukul myrrh), dihydromethysticin and desmethoxyyangonin (in Kava kava), forskolin (in Coleus forskohlii), hypoxoside (an inactive constituent in Hypoxis sp, which is converted into active metabolite rooperol in the gut), L-canavanine (in Sutherlandia sp), artemisinin (in Qing hao), schisandrin A, schisandrin B and schisandrol B (in Wu wei zi), Paclitaxel, also called taxol (in Pacific yew), and cafestol (in coffee).
agonist rifampicin. These two kavalactones are responsible for the induction of CYP3A23 gene expression mediated via PXR activation. Kava kava exerts dual effects on CYP enzyme: (i) competitive inhibition, and (ii) induction of CYP3A gene expression. Both these kava lactones affect the therapeutic efficacy of co-administered drugs such as levodopa, hydrochlorothiazide, promethazine, fluspirilen and biperiden (Ma et al., 2004). All these reports suggest that Kava kava would affect the metabolism of co-administered drugs in a manner similar to St. John’s wort.

6. Coleus forskohlii – Drug interactions

The extract of plant Coleus forskohlii has been used as an Ayurvedic medicine to treat various disorders including hypothyroidism, hypertension, congestive heart failure, eczema, respiratory disorders and convulsions (Ammon and Muller, 1985). It is also known to be used as an anti-obesity agent, in view of its ‘fat burning’ property. The two diterpene compounds forskolin and 1, 9-dideoxyforskolin are the active constituents of C. forskohlii. Forskolin has both cAMP-dependent and cAMP-independent activities. Forskolin is widely used as a biochemical tool to activate adenyl cyclase and increase intracellular concentration of cAMP with subsequent activation of protein kinase A (PKA) signal transduction pathway (Seamon et al., 1981). It was shown that both forskolin and 1, 9-dideoxyforskolin (non-adenylcyclase activating analog) induce CYP3A gene expression in primary cultures of rodent hepatocytes (Sidhu and Omiecinski, 1996). Recent studies reveal that both these compounds are potent PXR activators (Ding and Staudinger, 200; Dowless et al., 2005), which work by displacing the co-repressor N-CoR and recruiting co-activator proteins in cell-based assays. Interestingly, PKA and PXR signalling pathways have a synergistic effect on the induction of CYP3A gene expression in primary mouse hepatocyte cultures (Ding and Staudinger, 2005b). Consumption of C. forskohlii extract is not advised with other drugs results in inhibition of drug metabolism and transport during short term therapy. However, prolonged therapy results in induction of the same detoxification machinery. This observation is exemplified with an anti-retroviral agent (Mills et al., 2005b). It remains to be determined if the active herbal compounds in the extracts affecting CYP3A4 and PXR are different from those having therapeutic activities and, if so, the compounds with potential therapeutic activities could be purified to treat patients and avoid unwanted side effects caused by CYP3A4 and PXR intervention.

8. Qing hao – Drug interactions

Qing hao (Artemisia annua) is a Chinese herbal medicine used in treatment of malaria. The therapeutically active compound it contains is artemisinin (or qinghaosu). Artemisinin and some of its active synthetic derivatives (artemether, arteether and artesunate), collectively called artemisinin drugs, are used worldwide as effective and popular anti-malarial drugs because the malarial parasite has not yet developed resistance against these drugs (van Agtmael et al., 1999). But, then, allopathic drugs co-administered with artemisinin drugs will result in lowered plasma concentration and decreased therapeutic efficacy of the allopathic drugs due to induction of detoxification machinery (Hassan Alin et al., 1996; Ashton et al., 1998). This inference is based on the fact that artemisinin activates PXR and CAR in reporter gene assays and also known to induce CYP2B6, CYP3A4 and MDR1 gene expressions in primary human hepatocytes and the human intestinal cell line LS174T (Burk et al., 2005). These findings reveal that artemisinin has a higher risk of potential drug-herbal interactions via induction of CYP3A4 and MDR1 through activation of PXR and CAR.

9. Wu wei zi – Drug interactions

Wu wei zi (Schisandra chinensis), a traditional Chinese medicine, means ‘five-flavor fruit’ in Chinese since
it has all the five basic flavors: salty, sweet, sour, pungent (spicy) and bitter. It has been already reported that Wu wei zi extracts and the active chemical constituents, including schisandrin A, schisandrin B and schisandrol B are potent PXR agonists in reporter gene assays. Its hepato-protective effects are clinically documented and used for treatment of many ailments such as infections, cough and thirst. The therapeutically active hepato-protective and immuno-modulating constituents are the lignans, schisandrin, deoxyschisandrin, gomisins and pregomisin. In addition to PXR activation, these constituents efficaciously induce the PXR target genes CYP3A4 and CYP2C9 in primary cultures of human hepatocytes and promote in vivo drug metabolism (Mu et al., 2006). It has also been shown that Wu wei zī increases the metabolism of co-administered drug warfarin in rat. Although the herb has hepato-protective property, it may cause drug-herbal interactions due to induction of detoxification system.

10. Gan cao (Licorice) – Drug interactions

Gan cao (Glycyrrhiza uralensis) is another traditional Chinese medicine that has anti-inflammatory and hepato-protective effects. It activates PXR (Mu et al., 2006) but it remains to be determined if it would induce PXR target genes. Like Wu wei zī, Gan cao also promotes in vivo drug metabolism and increases metabolism of warfarin in rats. The activation of PXR by this herb may also provide beneficial effects because of hepato-protective action. One study has shown that PXR activation promotes bilirubin detoxification in mice (Synold et al., 2001). These studies highlight the dual nature of PXR activation: i) the promotion of drug metabolism, leading to potential drug interactions and therapeutic failure, and ii) activation of detoxifying systems to protect our bodies from toxic insults.

11. Paclitaxel – Drug interactions

Paclitaxel (Taxol), a member of the taxane family of anti-microtubule agents, is isolated from the bark of the Pacific yew (Taxus brevifolia) and widely used in the treatment of several types of cancer such as ovarian, breast and lung carcinomas. Paclitaxel is metabolically inactivated by the hepatic cytochrome P450 enzymes CYP3A4 and CYP2C8. Both these enzymes hydroxylate paclitaxel thereby abolishing the anti-mitotic properties of the drug. In addition, paclitaxel is excreted from the intestine via P-glycoprotein efflux pump protein encoded by the gene MDR1 (Synold et al., 2001). Gene-targeting studies have demonstrated that P-glycoprotein is responsible for excretion of 85% of the orally administered paclitaxel. Earlier reports have shown that paclitaxel is an effective inducer of CYP3A expression in primary cultures of rat and human hepatocytes (Kostrubsky et al., 1997, 1998). Furthermore, investigations employing cell-based reporter assays have shown that paclitaxel strongly activates human PXR (Synold et al., 2001; Nallani et al., 2004). Mammalian two-hybrid assays revealed that paclitaxel-bound PXR recruits nuclear receptor co-activators and displaces corepressors. The Northern blot analysis in this study showed that paclitaxel induces the expression of CYP2C8, CYP3A4 and MDR1 in hepatocytes (Synold et al., 2001). These results were confirmed in vivo by employing PXR-null mice (Nallani et al., 2003). In view of these findings, the herbal drug paclitaxel could be a suspect in drug-herbal interactions.

12. Cafestol– Drug interactions

Coffee bean (Coffea arabica) is a herbal remedy widely used as CNS stimulant and as an anti-diuretic agent. It contains several active chemical constituents such as caffeine, cafestol, kahweol, etc. Cafestol, a diterpene, is the most potent cholesterol-elevating compound in coffee beans and may also act as an anti-carcinogen. Cafestol is abundantly present in unfiltered coffee brews as compared to espresso coffee. It is already known that PXR can also inhibit CYP7A1 expression (Staudinger et al., 2001), and is activated by a variety of xenobiotics, and thus protects the liver from toxic compounds (Goodwin et al., 2003). It is also known that certain bile acids can inhibit CYP7A1 expression independently of small heterodimer partner (SHP) via PXR (Kerr et al., 2002; Wang et al., 2002; Saradhi et al., 2006). In this background, cafestol has been shown to regulate metabolic and detoxification genes in mice. It activates mouse and human PXR as well as FXR in the reporter-based transactivation assay. Cafestol enhances interaction of PXR with nuclear receptor coactivator SRC-1 and induces CYP3A4 promoter activity via PXR but to a lesser extent than its known ligand, rifampicin (Ricketts et al., 2007). Cafestol also induces the activity of several GST enzymes (Lam et al., 1982, 1987) and, therefore, is a potential suspect for drug-herbal interactions.

13. β-carotene – drug interactions

β-carotene belongs to the group of carotenoids and exhibits pro-vitamin A activity. Its major sources are green, yellow, orange and red vegetables. Tomatoes, spinach, carrots, apricot, grapefruit, cherry and papaya are rich in β-carotene. β-carotene is endogenously present as several isomers: all trans-β, β’-carotene, the major
\( \beta \)-carotene isomer, followed by 15-cis, 13-cis and 9-cis isomers (Stahl et al., 1992). Earlier studies adopting reporter cell assay have revealed that \( \beta \)-carotene is an activator of the human PXR even at physiological concentrations found in human plasma and organs. \( \beta \)-Carotene brings about PXR-mediated induction of drug metabolizing enzymes CYP3A as well as drug transporters MDR1 and MRP2 (Rühl et al., 2004). Induction of CYP3A genes and drug efflux proteins can increase the drug clearance and reduce the therapeutic efficacy of co-administered pharmaceutical drugs, ultimately causing drug-herbal interactions (Pal and Mitra, 2006).

14. Conclusions

Herbal medicines contain a number of active constituents exhibiting different or similar pharmacological effects. However, in certain instances, some of the active constituents of herbal medicines are implicated in causing drug-herbal interactions when co-administered with allopathic drugs. For examples, in certain clinical situations co-administration of herbal medicines with prescription drugs may modulate the pharmacological activity of the co-administered drug. Here we have provided an overview, on the basis of available evidences, indicating that herbal medicines have the potential to cause clinically significant life-threatening drug-herbal interactions. Some of the herbal medicines responsible for the activation of phase-I and phase-II drug metabolizing enzymes and phase-III drug transporters, regulated via PXR, are now identified. From the comprehensive evidences of drug-herbal interaction, it is clear that the herbal medicines, which patients receive, can potentially interfere with prescription drugs by activation of drug metabolizing enzymes via PXR, and such patients are most at risk of serious drug-herbal interactions. Patients generally consider herbal medicines as safe and may not mention their intake during medication history interviews performed by pharmacists, nurses or physicians. In view of the current understanding, patients should be enquired about any intake of herbal medicines or natural product(s) and other medications in order to evaluate the potential of these products to interfere when used concurrently with prescription medication. More importantly, in the perspective of PXR’s role, there is need for more in vivo studies to validate drug-herbal interactions and determine the clinical importance of drug-herbal interactions from the holistic viewpoint (Venkataramanan et al., 2006). Drug assays in correlation with PXR can serve as a valuable tool to assess and prevent potential drug-herbal interactions. It is strongly recommended that herbal remedy when used in combination with other drugs should be evaluated, monitored and screened to prevent possible interactions with prescription medications. A comprehensive approach and understanding will help combating undesired clinical complications.

Acknowledgments

The research work in our laboratory (JNU) on PXR is financially supported by research grants to RKT from Department of Science and Technology (SR/SO/BB-17/2006) and Council of Scientific and Industrial Research [37(1249)/06/EMR-II].

References


